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Abstract. An exact charged solution with axial symmetry is obtained in the teleparallel equivalent
of general relativity. The associated metric has the structure function G(ξ) = 1− ξ2−2mAξ3− q2A2ξ4.
The fourth order nature of the structure function can make calculations cumbersome. Using a coor-
dinate transformation we get a tetrad whose metric has the structure function in a factorizable form
(1− ξ2)(1+ r+Aξ)(1+ r−Aξ) with r± as the horizons of Reissner–Nordström space-time. This new form has
the advantage that its roots are now trivial to write down. Then, we study the singularities of this space-
time. Using another coordinate transformation, we obtain a tetrad field. Its associated metric yields the
Reissner–Nordström black hole. In calculating the energy content of this tetrad field using the gravitational
energy-momentum, we find that the resulting form depends on the radial coordinate! Using the regularized
expression of the gravitational energy-momentum in the teleparallel equivalent of general relativity we get
a consistent value for the energy.

PACS. 04.20.Cv; 04.50.+h; 04.20.-q

1 Introduction

The charged C-metric line element and electromagnetic
potential are given by [16, 17]

ds2 =
1

A2(x−y)2

[
G(y)dt2−

dy2

G(y)
+
dx2

G(x)
+G(x)dφ2

]
,

A=Qydt , (1)

where A is the electromagnetic vector potential, Q is the
charge parameter, and the structure function G is defined
by

G(ξ)
def.
= 1− ξ2−2mAξ3− q2A2ξ4. (2)

Here m and A are positive parameters related to the mass
and acceleration of the black hole, such thatmA< 1/

√
27.

The fact that G is a fourth order polynomial in ξ means
that one cannot in general write down a simple expression
for its roots. Since these roots play an important role in
almost every analysis of the charged C-metric, most re-
sults have to be expressed implicitly in terms of them. Any
calculation which requires their explicit forms would natu-
rally be very tedious if not impossible to carry out [2–4].
At present, teleparallel theory seems to be popular

again. There is a trend of analyzing the basic solutions of
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general relativity with teleparallel theory and comparing
the results. It is considered as an essential part of general-
ized non-Riemannian theories such as the Poincaré gauge
theory [5–17] or metric-affine gravity [18]. The physics
relevant to geometry may be related to the teleparallel
description of gravity [19–23]. Within the framework of
metric-affine gravity, a stationary axially symmetric ex-
act solution of the vacuum field equations is obtained for
a specific gravitational Lagrangian by using prolongation
techniques (see [24] and references therein). The telepar-
allel approach is used for the positive-gravitational-energy
proof [25]. A relation between spinor Lagrangian and
teleparallel theory is established [26]. In the metric-affine
generalization of teleparallelism, Obukhov et al. [27–29]
have shown that there is an inconsistency in the coup-
ling of spinors. Mielke [30] demonstrated the consistency of
the coupling of the Dirac fields to the teleparallel equiva-
lent of general relativity (TEGR). However, Obukhov
and Pereira [27–29] have shown that this demonstra-
tion is not correct. They also [27–29] have studied the
general teleparallel gravity model within the framework
of the metric-affine gravity theory. Nester et al. [31–33]
have considered the quasilocal center-of-mass (COM) in
tetrad teleparallel gravity. They have used the covari-
ant Hamiltonian formalism, in which quasilocal quanti-
ties are given by the Hamiltonian boundary term, along
with the covariant asymptotic Hamiltonian boundary
expressions. Consideration of the COM not only gives
the most restrictive asymptotic conditions on the vari-
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ables but also gives strong constraints on the acceptable
expressions [31–33].
For a satisfactory description of the total energy of

an isolated system it is necessary that the energy dens-
ity of the gravitational field is given in terms of first-
and/or second-order derivatives of the gravitational field
variables. It is well known that there exists no covariant,
non-trivial expression constructed out of the metric tensor.
However, covariant expressions that contain a quadratic
form of first-order derivatives of the tetrad field are feas-
ible. Thus it is legitimate to conjecture that the difficulties
regarding the problem of defining the gravitational energy-
momentum are related to the geometrical description of
the gravitational field rather than being an intrinsic draw-
back of the theory [34, 35]. Møller has shown that the prob-
lem of the energy-momentum complex has no solution in
the framework of gravitational field theories based on Rie-
mannian space-time [36]. In a series of papers [36–39], he
was able to obtain a general expression for a satisfactory
energy-momentum complex in the teleparallel space-time.
Xu and Jing derived the field equation with a cosmological
term and studied the energy of the general 4-dimensional
stationary axisymmetric space-time in the context of the
Hamiltonian formulation of the TEGR [40].
It is well known that TEGR [19–35] provides an alter-

native description of Einstein’s general relativity. In this
theory the gravitational field is described by the tetrad
field eaµ. In fact the first attempt to construct a theory of
the gravitational field in terms of a set of four linearly in-
dependent vector fields in theWeitzenböck geometry is due
to Einstein [41–43].
A well posed and mathematically consistence expres-

sion for the gravitational energy has been developed [35].
It arises in the realm of the Hamiltonian formulation of
the TEGR [44] and satisfies several crucial requirements
for any acceptable definition of the gravitational energy.
The gravitational energy-momentum P a [35, 45] obtained
in the framework of the TEGR has been investigated in
the context of several distinct configurations of the gravi-
tational field. For asymptotically flat space-times P 0 yields
the ADM energy [46]. In the context of tetrad theories of
gravity, asymptotically flat space-times may be character-
ized by the asymptotic boundary condition

eaµ ∼= ηaµ+
1

2
haµ(1/r) , (3)

and by the condition ∂µe
a
µ = O(1/r

2) in the asymptotic
limit r→∞, with ηab = (−1,+1,+1,+1) the metric of
Minkowski space-time. An important property of tetrad
fields that satisfy (3) is that in the flat space-time limit
one has eaµ(t, x, y, z) = δ

a
µ, and therefore the torsion tensor

T aµν = 0. Maluf [47] has extended the definition P
a for the

gravitational energy-momentum [35, 44] to any arbitrary
tetrad fields, i.e., for the tetrad fields that satisfy T aµν �= 0
for the flat space-time. The redefinition is the only possible
consistent extension of P a, valid for the tetrad fields that
do not satisfy (3).
It is the aim of the present work to derive a charged axi-

ally symmetric solution in TEGR. In Sect. 2 we give a brief

review of the TEGR of the coupled gravitational and elec-
tromagnetic fields. A tetrad having axial symmetry with
six unknown functions in x and y is applied to the field
equations and a solution of charged axial symmetry is ob-
tained in Sect. 3. A coordinate transformation is applied to
the tetrad obtained in Sect. 3, to put the structure function
in a factorizable form. The advantage of this transform-
ation is that it makes the roots of the original solution fac-
torizable. Also in Sect. 3, the tetrad singularities (15) (see
below) are studied. In Sect. 4, another coordinate trans-
formation is applied to the tetrad (15) and a tetrad so that
its associated metric gives the Reissner–Nordström black
hole is obtained. The energy content of the tetrad (20) (also
see below) is calculated in Sect. 4 using the gravitational
energy-momentum [35, 47], and an unsatisfactory value of
energy is obtained. In Sect. 5 we use the regularized expres-
sion for the gravitational energy-momentum to calculate
the energy. A discussion and conclusion of the obtained re-
sults are given in the final section1.

2 The TEGR for gravitation
and electromagnetism

In a space-time with absolute parallelism the parallel vec-
tor fields eµa define the non-symmetric affine connection

Γλµν
def.
= eλae

a
µ,ν , (4)

where eaµ,ν = ∂νeaµ.
2 The curvature tensor defined by Γλµν

is identically vanishing, however. The metric tensor gµν is
given by

gµν = ηabe
a
µe
b
ν . (5)

The Lagrangian density for the gravitational field in the
TEGR, in the presence of matter fields, is given by3 [35, 48]

LG = eLG =−
e

16π

(
T abcTabc

4
+
T abcTbac

2
−T aTa

)
−Lm

=−
e

16π
ΣabcTabc−Lm , (6)

where e= det(eaµ). The tensor Σ
abc is defined by

Σabc
def.
=
1

4
(T abc+T bac−T cab)+

1

2
(ηacT b−ηabT c) . (7)

T abc and T a are the torsion tensor and the basic vector field
defined by

T aµν
def.
= eaλT

λ
µν = ∂µe

a
ν −∂νe

a
µ ,

T abc
def.
= eµb e

ν
cT
a
µν , T a

def.
= T bb

a
. (8)

1 The computer algebra system Maple 6 is used in some
calculations.
2 The space-time indices µ, ν, . . . and the SO(3, 1) indices a,
b, . . . run from 0 to 3. Time and space indices are indicated by
µ= 0, i, and a= (0), (i).
3 Throughout this paper we use the relativistic units,
c=G= 1 and κ= 8π.
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The quadratic combination ΣabcT abc is proportional to
the scalar curvature R(e), except for a total divergence
term [34]. Lm represents the Lagrangian density for the
matter fields. The electromagnetic Lagrangian density
Le.m. is given by [50]

Le.m.
def.
= −

e

4
gµρgνσFµνFρσ , (9)

where Fµν is given by
4 Fµν

def.
= ∂µAν −∂νAµ, andAµ is the

electromagnetic potential.
The gravitational and electromagnetic field equations

for the system described by LG+Le.m. are the following:

eaλebµ∂ν(eΣ
bλν)− e

(
Σbνa Tbνµ−

1

4
eaµTbcdΣ

bcd

)
=
1

2
κeTaµ,

∂ν(eF
µν) = 0 , (10)

where

δLm

δeaµ
≡ eTaµ .

It is possible to prove by explicit calculations that the left
hand side of the symmetric field equations of (10) is exactly
given by [35]

e

2

[
Raµ(e)−

1

2
eaµR(e)

]
.

3 Charged axially symmetric solution

In this section we will assume the parallel vector fields to
have the form

(
eaµ
)
=

⎛
⎜⎜⎝
A1(x, y) 0 0 0

0 B1(x, y) cosφ 0 −B2(x, y) sinφ

0 0 C1(x, y) 0

0 D1(x, y) sinφ 0 D2(x, y) cosφ

⎞
⎟⎟⎠ ,

(11)

where A1(x, y), B1(x, y), B2(x, y), C1(x, y), D1(x, y) and
D2(x, y) are unknown functions. We use a non-diagonal
form of the tetrad given in (11) in spite the metric repro-
duced being in a diagonal form. This is due to the fact
that there are non-diagonal tetrads reproduced, there be-
ing a diagonal metric, however, more physics is needed to
explain the obtained results [51, 52].
Applying (11) to the field equations (10) we obtain the

unknown functions in the form

A1(x, y) =

√
G(y)

A(x−y)
, B1(x, y) =

1

A(x−y)
√
G(x)

,

B2(x, y) =

√
G(x)

A(x−y)
, C1(x, y) =

1

A(x−y)
√
G(y)

,

D1(x, y) =
1

A(x−y)
√
G(x)

, D2(x, y) =

√
G(x)

A(x−y)
, (12)

4 Heaviside–Lorentz rationalized units will be used through-
out this paper.

where G(ξ) = 1− ξ2− 2mAξ3−Q2A2ξ4, and the elec-
tromagnetic potential is given by A = Qydt, where
Q= q

2
√
π
[49, 50] is the charge parameter. The associated

metric of solution (12) has the form (1), which is the
charged C-metric. As we have seen in the introduction, in
general one cannot easily write down simple expressions of
the roots of G. Therefore, one must find some coordinate
transformation which makes the roots of G written explic-
itly and this would in turn simplify a certain analysis of the
charged C-metric. This coordinate transformation has the
form [53]

x=B(x̄− c1) , y =B(ȳ− c1) , φ=B1φ̄ , t=B1t̄ ,
(13)

where

B =

(
1− Ā2Q̄2+6m̄Āc1+6Q̄2Ā2c12

1+(1− Q̄2Ā2)c12+4m̄Āc13+3Q̄2Ā2c14

)1/2
,

B1 =

√
1− Ā2Q̄2+6m̄Āc1+6Q̄2Ā2c12

×
√
1+(1− Q̄2Ā2)c12+4m̄Āc13+3Q̄2Ā2c14 ,

where x̄, ȳ, φ̄, t̄ are the new coordinates and

Q=
Q̄

1− Ā2Q̄2+6m̄Āc1+6Q̄2Ā2c12
,

m=
m̄+2Q̄2Āc1(

1− Ā2Q̄2+6m̄Āc1+6Q̄2Ā2c12
)3/2 ,

A=
√
1+(1− Q̄2Ā2)c12+4m̄Āc13+3Q̄2Ā2c14Ā ,

4Q̄2Ā2c1
3+6m̄Āc1

2+2(1− Q̄2Ā2)c1 = 2m̄Ā . (14)

Applying the coordinate transformation (13) to the tet-
rad (11) with the solution (12), we obtain

(
eaµ
)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H(ȳ)

Ā(x̄− ȳ)
0 0 0

0
cos φ̄∗

Ā(x̄− ȳ)H(x̄)
0 −

H(x̄) sin φ̄∗

Ā(x̄− ȳ)

0 0
1

Ā(x̄− ȳ)H(ȳ)
0

0
sin φ̄∗

Ā(x̄− ȳ)H(x̄)
0

cos φ̄∗H(x̄)

Ā(x̄− ȳ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(15)

where

φ̄∗ =B1φ̄ ,

with B1 given in (13) and

H(ξ) =

√
1− ξ2+ Q̄2Ā2ξ2+2m̄Āξ−2m̄Āξ3− Q̄2Ā2ξ4 .
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The associated metric of the tetrad field given by (15) is
given by

ds2 =
1

A2(x−y)2

×

[
G1(y)dt

2−
dy2

G1(y)
+
dx2

G1(x)
+G1(x)dφ

2

]
,

(16)

where G1(ξ) is defined by

G1(ξ)
def.
= (1− ξ2)(1+ r+Aξ)(1+ r−Aξ) =H

2(ξ) ,

with

r∓ = m̄∓
√
m̄2− Q̄2 ,

and 0≤ r−A ≤ r+A < 1 [53], and the electromagnetic po-
tential has the form

A= Q̄(x̄− c1)dt .

It is clear from (16) that one can gets the roots easily hav-
ing the form

ξ1,2 =−
1

r∓A
, ξ3,4 =∓1 , (17)

which obey

ξ1 ≤ ξ2 < ξ3 < ξ4 .

Nowwearegoing to studythe singularities of the tetrad(15).
In teleparallel theories of gravity we mean by a singular-

ity of space-time [50] the singularity of the scalar concomi-
tants of the curvature and torsion tensors.
Using the definitions of the Riemann–Christoffel,

the Ricci tensors, the Ricci scalar, the torsion tensor and
the basic vector (8), [54] we obtain for the solution of (15)

RµνλσRµνλσ = F1(x̄, ȳ) ,

RµνRµν = F2(x̄, ȳ) ,

R= F3(x̄, ȳ) ,

T abcTabc =
F4(x̄, ȳ)

(1− x̄2)(1− ȳ2)(1+2x̄m̄Ā+ Q̄2x̄2Ā2)(1+2ȳm̄Ā+ Q̄2ȳ2Ā2)
,

T aTa =
F5(x̄, ȳ)

(1− x̄2)(1− ȳ2)(1+2x̄m̄Ā+ Q̄2x̄2Ā2)(1+2ȳm̄Ā+ Q̄2ȳ2Ā2)
,

(18)

where Fi, i= 1, . . . , 5 are too lengthy functions of x̄ and ȳ.
It is clear from (18) that the scalars of the torsion and the
basic vector have the same singularities, as the dominators
of both are the same. Let us discuss these singularities.

1) If x̄= ȳ= ξ3, then all the scalars of (18) have a singular-
ity which is called asymptotic infinity [53].

2) When ȳ = ξ2, there is a singularity which is called
a black hole event horizon [53].

3) When ȳ = ξ3, there is also a singularity which is the ac-
celeration horizon.

4) When x̄= ξ4, there is a singularity which makes a sym-
metry axis between event and acceleration horizons .

5) When x̄= ξ3 there is a singularity which makes a sym-
metry axis joining event horizon and asymptotic
horizon.

6) When x̄ = ξ3 and ȳ = ξ4, there will be a conical
singularity [53].

4 Energy content

To write the tetrad field given in (15) in spherical po-
lar coordinates, we will use the following coordinate
transformation [53]:

x̄= cos θ , ȳ =−
1

Ār
, φ̄∗ = φ̄∗ , t̄= Āt1 , (19)

where r, θ, t1 are the new coordinates. Applying the trans-
formation (19) to the tetrad field (15) we get

(
eaµ
)
=⎛

⎜⎜⎜⎜⎜⎜⎜⎝

−

√
r2−2m̄r+ Q̄2H1

rG2
0 0 0

0 0
r cos φ̄∗

FG2

rF sin θ sin φ̄∗

G2

0
r

√
r2−2m̄r+ Q̄2G2H1

0 0

0 0
r sin φ̄∗

FG2
−
rF sin θ cos φ̄∗

G2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

(20)

where

F =

√
1+2m̄Ā cos θ+ Q̄2Ā2 cos2 θ ,

G2 = (Ār cos θ+1) , H1 =
√
Ā2r2−1 .

Taking limĀ→0 in (20), the associate metric will have the
Reissner–Nordström space-time. Now we are going to cal-
culate the energy content of (20). Before we do this let us
give a brief review of the derivation of the gravitational
energy-momentum.
Multiplication of the symmetric part of (10) by the ap-

propriate inverse tetrad fields yields the result that it is to
have the form [35, 47]

∂ν(−eΣ
aλν) =−

eeaµ

4

(
4ΣbλνTbνµ− δ

λ
µΣ
bdcTbcd

)
−4πeaµT

λµ. (21)

By restricting the space-time index λ to assume only spa-
tial values, (21) takes the form [35]

∂0(eΣ
a0j)+∂k(eΣ

akj) =−
eeaµ

4

(
4ΣbcjTbcµ− δ

j
µΣ
bcdTbcd

)
−4πeeaµT

jµ. (22)
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Note that the last two indices of Σabc and T abc are anti-
symmetric. Taking the divergence of (22) with respect to j
yields

−∂0∂j

(
−
1

4π
eΣa0j

)
=

−
1

16π
∂j
[
eeaµ
(
4ΣbcjTbcµ− δ

j
µΣ
bcdTbcd

)
−16π(eeaµT

jµ)
]
.

(23)

In the Hamiltonian formulation of the TEGR [13–15,
44], the momentum canonically conjugated to the tetrad
components eaj is given by

Πaj =−
1

4π
eΣa0j ,

and the gravitational energy-momentum P a contained
within a volume V of the three-dimensional spacelike hy-
persurface is defined by [35]

P a =−

∫
V

d3x∂jΠ
aj . (24)

If no condition is imposed on the tetrad field, P a trans-
forms as a vector under the global SO(3, 1) group. It
describes the gravitational energy-momentum with re-
spect to observers adapted to eaµ. These observers are
characterized by the velocity field uµ = eµ(0) and by the
acceleration fµ

fµ =
Duµ

ds
=
Deµ(0)
ds
= ua∇ae

µ
(0) .

Let us assume that the space-time is asymptotically flat.
The total gravitational energy-momentum is given by

P a =−

∮
S→∞

dSkΠ
ak. (25)

The field quantities are evaluated on a surface S in the
limit r→∞.
Now we are going to apply (25) to the tetrad field (20)

to calculate the energy content. We perform the calcula-
tions in Cartesian coordinates. Equations (24) and (25)
assumed that the reference space is determined by a set of
tetrad fields eaµ for the flat space-time, such that the condi-
tion T aµν = 0 is satisfied. It is clear from (22) that the only
components which contribute to the energy is Σ00α. Thus
substituting the solution (20) into (7), we obtain the fol-
lowing non-vanishing value:

Π0a ∼=
xa

κr3(x2+y2)

(
1−
2m̄

r
+
q2

r2

)

×

(
r3+

{
r−6m̄+

3Q̄2

r

}
(x2+y2)

)
, a= 1, 2 ,

Π03 ∼=
z

κr3
(
1−
2m̄

r
+
Q̄2

r2

)
(
r−6m̄+

3Q̄2

r

)
. (26)

Substituting from (26) into (25) we get the form of the en-
ergy contained within a sphere of radius R as given by

P (0) =E(R) =−R

(
1−
2m̄

R
+
Q̄2

R2

)−3/2(
1−
4m̄

R
+
2Q̄2

R2

)

∼=−

(
R− m̄+

Q̄2

2R

)
. (27)

5 Regularized expression
for the gravitational energy-momentum
and localization of energy

An important property of the tetrad fields that satisfy
the condition of (3) is that in the flat space-time limit
eaµ(t, x, y, z) = δ

a
µ, and therefore the torsion T

λ
µν = 0. Hence

for the flat space-time it is normal to consider a set of
tetrad fields, such that T λµν = 0 in any coordinate sys-
tem. However, in general an arbitrary set of tetrad fields
that yields the metric tensor for the asymptotically flat
space-time does not satisfy the asymptotic condition given
by (3). Moreover, for such tetrad fields the torsion T λµν �= 0
for the flat space-time [47]. It might be argued, there-
fore, that the expression for the gravitational energy-
momentum (24) is restricted to a particular class of tetrad
fields, namely, to the class of frames such that T λµν = 0, if
Eaµ represents the flat space-time tetrad field [47]. To ex-
plain this, let us calculate the flat space-time of the tetrad
field of (20), which is given by

(
Eaµ
)
=

⎛
⎜⎜⎝
1 0 0 0

0 0 −r cos φ̄∗ −r sin θ sin φ̄∗

0 1 0 0

0 0 −r sin φ̄∗ r sin θ cos φ̄∗

⎞
⎟⎟⎠ . (28)

Expression (28) yields the following non-vanishing torsion
components:

T(1)21 =− cos φ̄
∗, T(1)31 =− sin θ cos φ̄

∗,

T(1)23 = r sin φ̄
∗(cos θ+1) , T(3)12 = sin φ̄

∗,

T(3)13 =− sin θ sin φ̄
∗, T(3)23 =−r cos φ̄

∗(cos(θ)+1) .
(29)

The tetrad field (28) when written in Cartesian coordi-
nates will have the form

(
Eaµ(t, x, y, z)

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0
y2r−x2z

r(x2+y2)
−
yx(z+ r)

r(x2+y2)

x

r

0
x

r

y

r

z

r

0 −
yx(z+ r)

r(x2+y2)

x2r−y2z

r(x2+y2)

y

r

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(30)

In view of the geometric structure of (30), we see that (20)
does not display the asymptotic behavior required by (3).
Moreover, in general the tetrad field (30) is adapted to ac-
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celerated observers [35, 44, 47]. To explain this, let us con-
sider a boost in the x-direction of (30). We find

(
Eaµ(t, x, y, z)

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ −vγ 0 0

−vγ γ
y2r−x2z

r(x2+y2)
−
yx(z+ r)

r(x2+y2)

x

r

0
x

r

y

r

z

r

0 −
yx(z+ r)

r(x2+y2)

x2r−y2z

r(x2+y2)

y

r
,

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(31)

where v is the speed of the observer and γ =
√
1− v2. It

can be shown that along an observer’s trajectory whose
velocity is determined by

uu =Eµ(0) = (γ,−vγ, 0, 0) , (32)

the quantities

φ
(k)
(j) = u

i
(
E(k)m ∂iE

m
(j)

)
,

constructed out of (31) are non-vanishing. This fact indi-
cates that along the observer’s path the spatial axis Eµ(a)
rotate [44, 47]. In spite of the above problems discussed for
the tetrad field of (20) it yields a satisfactory value for the
total gravitational energy-momentum, as we will discuss.
In (24) and (25) it is implicitly assumed that the ref-

erence space is determined by a set of tetrad fields eaµ for
flat space-time, such that the condition T aµν = 0 is satis-
fied. However, in general there exist flat space-time tetrad
fields for which T aµν �= 0. In this case (24) may be general-
ized [44, 47] by adding a suitable reference space subtraction
term, exactly like in the Brown–York formalism [55–57].
We will denote T aµν(E) = ∂µE

a
ν −∂νE

a
µ and Π

aj(E)
as the expression of Πaj constructed out of the flat
tetradEaµ. The regularized form of the gravitational energy-
momentum P a is defined by [44, 47]

P a =−

∫
V

d3x∂k[Π
ak(e)−Πak(E)] . (33)

This condition guarantees that the energy-momentum of
the flat space-time always vanishes. The reference space-
time is determined by tetrad fields Eaµ, obtained from
eaµ by requiring the vanishing of the physical parameters
like mass, angular momentum, etc. Assuming that the
space-time is asymptotically flat, then (33) can have the
form [44, 47]

P a =−

∮
S→∞

dSk[Π
ak(e)−Πak(E)] , (34)

where the surface S is established at spacelike infinity.
Equation (34) transforms as a vector under the global
SO(3, 1) group. Now we are in a position to prove that
the tetrad field (20) yields a satisfactory value for the total
gravitational energy-momentum.
We will integrate (34) over a surface of constant radius

x1 = r and require r→∞. Therefore, the index k in (34)

takes the value k = 1. We need to calculate the quantity

Σ(0)01 = e
(0)
0 Σ

001 =
1

2
e
(0)
0 (T

001− g00T 1) .

Evaluating the above equation we find

−Π(0)1(e) =
1

4π
eΣ(0)01 =−

1

4π
r sin(θ)

√
1−
2m̄

r
+
Q̄2

r2
,

(35)

and the expression of Π(0)1(E) is obtained by just making
m̄= 0 and Q̄= 0 in (35); it is given by

Π(0)1(E) =
1

4π
r sin(θ) . (36)

Thus the gravitational energy contained within a sphere of
radius R is given by

P 0 ∼=

∫
r→R

dθdφ
1

4π
sin(θ)

{
− r

(
1−
m̄

r
+
Q̄2

2r2

)
+ r

}

= m̄−
Q̄2

2R
, (37)

which is the expected result.

6 Main results and discussion

The main results of this paper are the following:

• Simple expression of the roots of the structure function
has been obtained in (16).
• The singularities of the tetrad field of (15) are shown to
be related to the roots of the structure function.
• The tetrad field given in (15) with (t, x, y, φ̄∗)
has been transformed to spherical polar coordinates
(t, r, θ, φ̄∗).
• Setting the physical parameters equal to zero in the
tetrad field given in (20), i.e. m̄= 0 and Q̄= 0, we have
obtained a non-Minkowskian space-time.
• It is well known that calculations of the global energies
and momenta in TEGR are much easier than in GR.
Therefore, we have used the regularized expression of the
gravitational energy-momentum given in (34) to calcu-
late the mass-energy given by (37).
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